function [Output] = MF(Image,Library) % Matched Filter % Silas J. Leavesley, PhD % Сòòò½APP % Last Updated: 2/7/2017 % To visualize output data: % figure(1) % for i = 1:length(Output.data(1,1,:)) % subplot(1,length(Output.data(1,1,:)),i) % imagesc(Output.data(:,:,i)) % end % colormap(gray) % or any other colormap, as desired tic Image=double(Image); [O P] = size(Library); [L M N]=size(Image); Image_Reshaped=(reshape(Image,(L*M),N))'; %L M are x y N=# wavelengths K=L*M; % Total # pixels in image % Initialize library variable - library gets shifted by 1 endmember each % time around the loop Library_shifted = Library; % Run matched filter for each endmember for i = 1:P % Specify desired spectral signature (d) d = Library_shifted(:,1); % Remaining endmembers are undersired signatures (U) U = Library_shifted(:,2:P); % Define the pseudo-inverse of U U_pseudo = (inv(transpose(U)*U))*transpose(U); % Define the rejection operator I = eye(N); rejection_operator = (I-(U*U_pseudo)); % Define the filter function q = transpose(d)*rejection_operator; % Multiply image by filter function (pixel-by-pixel operation, in % vectorized form) for j = 1:K MF(j,i) = q*Image_Reshaped(:,j); end % Shift library to next endmember Library_shifted = circshift(Library_shifted,[0 -1]); end Output.data=reshape(MF,L,M,P); toc